Публикации
В.Н. Ушаков, С.А. Брыкалов, Г.В. Паршиков.
α-наборы дифференциальных включений и их унификация
// Математическая Теория Игр и ее Приложения, т. 7, в. 2. 2015. C. 85-116
Ключевые слова: дифференциальное включение, задача о сближении, гамильтониан, инвариантность, слабая инвариантность
В статье вводятся α-наборы дифференциальных включений на конечном промежутке времени [t0, ϑ] и определяется α-слабо инвариантное множество в [t0, ϑ] × Rn, где Rn – фазовое пространство дифференциальных включений. Изучаются задачи, относящиеся к вопросу о возможности приведения движений (траекторий) дифференциальных включений из α-набора на заданное компактное множество M ⊂ Rn в момент времени ϑ. Обсуждаются проблемы, связанные с выделением множества разрешимости W ⊂ [t0, ϑ] × Rn в задаче о приведении движений α-набора на M и вычислением максимального α-слабо инвариантного множества W c ⊂ [t0, ϑ] × Rn. Вводит ся понятие квазигамильтониана α-набора (α-гамильтониана), являющееся, на наш взгляд, важным при изучении задач о сближении движений α-набора с M.
α-наборы дифференциальных включений и их унификация (517 Kb, скачиваний: 127)
Последние изменения: 11 сентября 2015